Model Checking for Network Security Requirements via a Flexible Modeling
Framework

John D. Powell
Jet Propulsion Laboratory,
California Institute of Technology
John. Powell@jpl.nasa.gov

Abstract

Network security requirements are a complex set of
system rules which, if violated can have serious
repercussions. Verifying a given system's ability to meet
its requirements is of increasing importance as
dependency upon networked computer systems grows.
Servicing multiple Network Aware Applications (NAAs)
rzsults in an operational environment that compounds
verification complexity further. While an NAA may be
Jree (or nearly free) from vulnerabilities as a stand-alone
software component, it may present serious security risks
when interacting with other applications on a network.
These vulnerabilities can be exploited with disastrous
results.

Verification of network security system properties over
concurrent processes (NAAs) is a problem well suited to
model checking. However, the inherent complexity in
these systems resuits in an intractable number of possible
event combinations. This problem manifests itself as the
"State Space Explosion” problem, which is a known
limitation of model checkers. This paper proposes an
approach that mitigates this problem. The Flexible
Modeling Framework (FMF) facilitates construction of a
system model in a snodular fashion with well-defined
methods of interaction between processes. This allows a
series of models to be created efficiently. Results from the
FMF serve as input to a compositional analysis approach
also proposed in this paper to verify properties over
models, which would otherwise be beyond the capability
of current state of the art model checkers.

1. Introduction

This paper presents a model checking approach that
will allow a practitioner to verify critical requirements of
a system -that must operate in an environment that is
currently too complex to be effectively analyzed by state
of the art model checkers such as SPIN [1,23].
Networked systems, particularly those connected to the

David P. Gilliam
Jet Propulsion Laboratory,
California Institute of Technology
David P.Gilliam@)jpl. nasa.gov

Internet, provide a readily available domain of systems
meeting these criteria [18].

The Internet is a ubiquitous networking environment
that has become a major source of worldwide
communication and commerce. Thus, a system that
allows Internet connectivity to NAAs must provide
security to those applications in a wide range of
environments that are continually evolving. Network
security requirements seek to prevent or mitigate damage
from electronic attacks on the networked system in
question. Attacks to interconnected systems can cause
either focused or widespread havoc, from system
intrusions to spreading of viruses. A major concemn is the
presence of Distributed Denial of Service (DDoS) attacks
that flood victim networks with spurious traffic degrading
network communication and preventing access to network
resources.

Section 2 provides a brief introduction to model
checking. Section 3 discusses the FMF, which is a
specific approach to model checking systems that operate
in complex and volatile environments. Section 4 will
explain the characteristics of networked systems and DoS
attacks that motivate the use of this approach in the
network security domain. Section 5 relates the FMF to the
network security research currently being conducted at
the Jet Propulsion Laboratory (JPL). Section 6 will
discuss future extensions to the FMF to allow other
domains to take advantage of this novel approach.

2. Model Checking

Model checking involves the building of a
mathematical model of the system and identification of
properties to be verified. Model checkers, such as SPIN
[1,2,3], are tools that automate the process of verifying a
property over its corresponding model. This is
accomplished by an exhaustive search of the state space
generated by a model. State space refers to the collection
of reachable system states represented by the model. A

given state consists of the collection of all variables in the
model and their associated values at a given point in time.
When the value of a single variable changes, a transition
to a new state in the state space occurs. [1.2]

Model checkers suffer from the known problem of
state space explosion. [1,2 3] State space explosion refers
to the exponential growth (m’?) in the size of the state
space with respect to the number of variables (n) and their
ranges (m) in the model. This results in a limitation on
the size and or complexity of a system that may be model
checked. Many techniques have been developed to
advance model checking and to mitigate the state space
explosion phenomenon to varying degrees.
[2,3,4,5,6,7,8,9,10,11,12, 13,14,15]

Abstraction of system behavior requires the
combination of domain and model checking expertise to
ensure that behavior not pertinent to the property set is
abstracted away in such manner as to minimize the state
space while leaving pertinent behaviors intact. However,
the system’s necessary environmental behaviors often
produce much larger state space explosions than the
system itself. Currently, reduction of the environment’s
state space relies on the ability of practitioners to make
assumptions about the future environment in which the
system will operate. These assumptions represent a weak
link in the confidence of the formal verification results in
relation to the deployed system. Further, formulation of
adequate assumptions may not be possible due to the
unpredictable evolution of an environment during
operations. A system connected to the Internet produces
this very scenario. The end result is a state space that
cannot be sufficiently reduced to employ model-checking
technology. The FMF seeks to overcome this barrier.

3. Flexible Modeling Framework

The FMF is well suited to verification of a system
with respect 1o a highly complex environment. The basis
of the approach is the notion of building the model in
components that conform to a standardized interface for
interaction between components. This interface is not
designed to controi interaction (ie., interleaving of
events) but to allow components to be assembled in a
uniform manner to easily form multiple models each
representing a subset of the full system model.

3.1. Modeling in Components

The practice of building a model in components seeks
to build a series of very small models referred to as
components. Each model component will represent a
single logical segment of the system behavior. Multiple
segments will have to be assembled to form a non-trivial

model of a system, subsystem or environment behavior.
This is done through the framework via a previously
agreed upon set of variables (defined interface) which
facilitate communication between components when
necessary. Finally the model that will be verified with
respect to a given property or properties will be
assembled from the components within the framework.

Each component must be designated as a Core
Component or Non-Core Component. Core Components
are those model components that must be included in
every assembled model. A component is a core
component if:

e]t represents

behavior.

e It does not contain modeling constructs that
force synchronization or controlled interleaving
with respect to another component.

Components that combine system behaviors and
environmental behaviors should be diligently avoided.
These components can often be split into two or more
components that do not combine environmental and
system behaviors. However, if this combination in a
single component cannot be avoided it must be treated as
a core component based on its system behavior portion.
Note that there is an increase in state space size for every
assembled model when components combining system
and environmental behaviors are used unnecessarily.
This can place increased limitations on Compositional
Verification.

system (non-environmental)

3.2. Compositional Verification

Compositional Verification attempts to produce
verification results on assembled models that represent
the system (S) and a subset of the environmental behavior
() in a manner that allows those results to be generalized
to the system and its environment at large (E). Any
synchronization or controlled interleaving behavior (Syn)
that exists in E prohibits generalization of verification
results over (S e) to (S U E) unless (Syn < e). (See
Section 3.2)

The basis of the compositional verification approach is
the verification of a system (S) with regard to a subset of
its environment (¢) in a manner that allows those results
to be extrapolated to the environment at large (E). First, a
model of the system S is built. However, the behavior of
this model is only interesting with respect to £. In many
cases, the addition of model Eto S produces a state space
explosion that overwhelms the capabilities of model
checkers. The environmental state space explosion
problem is seen in model checking efforts across various
domains.

The proposed solution of verifying a large model by
examining sub-models within it rests on the idea that,
with some restrictions, an event sequence that produces a
property violation found in a given model (m) will still
exist in a larger model (M) where m — M. Identification
of a property violation is the discovery of a sequence of
events (transitions though a state space graph), which
represents behavior contrary to the property specification.
Within certain restrictions (R), if a property violation is
found to exist in m, then it also exists

mrssShade
Sppsfeevith

MimacM
State Space

FIGURE 1 »
in model M such that m < M. (See Figure 1) While the
use of a model checker may be infeasible for models such
as M due to state space explosion, the smaller model m
presents a feasible alternative. Further if R holds for m
then the results may be readily extrapolated to M.

The characteristics of the FMF, when applied to a
system M, ensure that all legal component combinations
(m) within the framework R will hold. Therefore, valid
extrapolation of verification results from m to M is
preserved. This will eliminate the need to exhaustively
examine all possible m’s when a property violation has
been found. Thus, the average number of m’s subject to
model checking a single property is reduced.

Prove that if a path P exists in a graph G then P exists in all graphs
G’ where G is a sub-graph of G*'.
1. Let G = (V. E) be a graph (assumption —G exists)

2. Let G™ = (V"K' be a graph (assumption -G un arhitrary
graph exists)

3 Let (G =(I"" E") = G G fussumption -G exists)

4. Let P=vI v v3 vy} \ PV and (Vi i] <i<n), vi
vi+l) e E) (assumption - P exists in G)

5. By2and3, V¥V

6. By2and3 EcE"

7. By 4 and 5 and set theory. P < 1"

8. By fand 6 and set theory. V(i, | 1 <i<n), (v vi+l) e £

9. . Byland7and8 V(G |G =G uUG), PcV and
(Vi { | <i<n), (vivi+l) eE’)

10. By 9and 4 if P exist in G then P exists in G’

3.3.Restrictions

As mentioned above, compositional
verification extrapolates results from partial
model instances assembled from components
within the FMF when the set of possible model
instances adheres to certain restrictions. The
FMF is an approach that preserves conformance
to these restrictions during the model building
process while also affording the modeler a
reasonable level of flexibility.

3.3.1 Shared Start State, The first restriction is that all
model instances must have the same start state.. A node
within a state space represents all the variable/value pairs
in the model at a given point of execution. This “given
point” is referred to as a state. When a single
variable/value pair is legally altered, a state transition
takes place. Graphically, the current search of the state
space graph moves to an adjacent node. When a violation
is found in a sub-graph of a larger model, extrapolation to
the model at large is valid if and only if the start state -
(node) is the same for both state space graphs. This
restriction can be formally stated as:
A path P in graph G that is reachable
Jrom node S is reachable in graph G"’ if
G <G and S is always reachable in G’

3.3.2. Absence of Synchronization in Omitted Model
Components, Synchronization and other blocking
behavior between components can affect reachability
within the underlying state space. Therefore, if a property
violation is found in a sub-model (M), this result cannot
be validly extrapolated to the model at large in all cases.
When synchronization and blocking behavior has been
omitted from M, it is possible that a path P representing a
property violation is not reachable in all model instances
that include M. The formal statement in section 3.2.1

must be extended to include this restriction. The formal
statement becomes:
A path P in graph G that is reachuble from node
S is reachable in graph G if G <G’ and a path
[S. P, Plexits in G’ and S is reachable in G

The existence of synchronization or other blocking
behaviors in a component C such that (C € ~(G N G™’) A
C ¢ G) introduces the possibility that path P’ may exist in
G but not in G”*. Thus, while the property violation
technically exists in the state space, the overall system
contains behaviors that prohibit it from ever being
reached (i.e., fault protection).

S may be reachable without being the start node in
G”". However, the nature of many temporal properties
restrict what may or may not take place prior to the start
of path P. [16,17] While the assertion that S must be
reached by a path {P*’, S} in G and G’” and P must be
reached by a path {S, P’} in G and G, this property can
be too restrictive. While it guarantees valid extrapolation
via identical precursory events, the modeler’s flexibility
would be severely impeded.

Finally, some systems have synchronization and
blocking behaviors that must be included in the model.
Within the framework, these synchronization behaviors
will be modeled in components either exclusively or in
conjunction with other behaviors. These components
must be included in every instance of the model that is to
be assembled to ensure that the path reached in a model
M can be extrapolated over components that were not
included. [t is important to note that there will always be
a core set of components that must be inciuded in every
model instance. They include components containing
critical system behavior (as opposed to environmental
behavior) in addition to synchronization and blocking
behaviors. Finally, at least one component containing the
start state S must be included. In most cases, at least one
system critical component will already contain this
behavior. If this is not the case, an “artificial” component

containing a safe artificial start node can be inserted.

3.4. Automation

For illustrative purposes the automation process will
be explained in terms of the network security example.
The potential for automation to maximize the benefit of
using the FMF is dependent on one’s ability to:

1. Define and conform to a consistent interface
definition between components

2. Systematically tailor the interaction of generic
network system software (E S y) and
environment (E x S) into their minimized

counter parts ESiand Ei S| ie (xy). (Sce
Figure 2)

If condition 2 above can be achieved in an automated
fashion, it would be of great benefit also to automate the
NAA combination selection and property selection. This
would allow models to be built, minimized and prepared
for verification on the fly. It would reduce the subsequent
tasks for fully automated verification of multiple
models/properties to a scripting problem. The overall
goal of this approach is to allow a model-checking
practitioner to build (M+2) components once and verify
the relevant properties for MN variations of the system
model automatically (See Figure 2). (Increase the size of
some of the boxes where the verbiage is cut off.

Generic Network Generic Library of NAAs Models
System Software Environment
Model Model NAA ' NaA; ' NA4s | ’ N

Generic Environment Genenc \\ l - / /

Network Variables 4~ NAA Combi

System . Used \/ﬁmmlzauon *
Minimization NAA Variables

Used
y

Table of LTL Minimized Minimized NAA Models

Properties . Network System Environment

Software
L '
and Translati Assemble Model Components 1
Script /
Biichi Automaton | Run o] Coilect Process
I I SPIN SPIN Output F‘
f
Figure 2: Autonted Model Verification Flow Chart
(Bold ltems are User Pre-Supplied Input)

The scripting pfoblem involved in completing
automation of this process is a combination of file
management commands and SPIN command line calls.
After the NAA combination has been identified, the
minimization tasks are performed. The variables that are
in use as a result of the NAA combination are supplied to
an environment minimization routine along with the
generic environment model. This routine’s output is the
minimized environment (unused environment variables
disabled) and the environment variables in use. The
network system software minimization routine accepts the
environment variables in use and the generic network
system software model as input. Next, a minimized
network system software model is output (unused
network system software variables disabled). The user
pre-supplied table of LTL properties is accessed. An
appropriate property is selected and translated into a biicci

automaton via a command line call to SPIN. The
following four components are assembled into a model:

. NAA Models

. Minimized Environment Model

. Minimized Network System Software Model

] Biicci Automaton Representation of a Property

Finally the SPIN model checker will be run to verify

the property and the output will be collected / processed.
The process will iterate by obtaining another property for
the current NAA combination (if it exists) or identifying a
new NAA combination. The appropriate portion of the
process will be repeated depending on the choice made in
the last step. This iteration may continue until all
properties for all legal combinations of a predefined
cardinality are verified.

3.5.Resolution Flexibility

Recall that the size of each component used in a model
constructed under the FMF contributes to the overall size
of the assembled model by a combinatorial factor (See
Figure 3). Also note that these components represent
behavior indicative of interaction between an application
with the network and other applications (See Figure 2).
The abstraction techniques used to produce minimized
behavior can hinder property verification when they omit
behavioral details that are pertinent to the property in
question. The necessary reduction of state space size is
inherently in conflict with the need to verify a property
over all possible behaviors of the system. Therefore these
two competing requirements must be balanced by using
techniques including but not limited to:

1. System Abstraction -- Justifying that some
system behaviors can in no way affect the
property being tested.

2. Domain Specification -- Making some
assumption(s) about the behavior that the
environment will inflict on the system.

System abstraction and domain specification are non-
trivial tasks. First, justification that one behavior is not
affecting others is limited by expert’s knowledge about
number of known system interactions. Further, the
number of interactions that must be known and
understood may be intractable when overlapping chains
of multiple interactions are considered. Therefore, this .
Justification process can mask hazards in software that are
caused by the very (yet to be known) process interactions
for which model checking is being employed to identify.

Secondly, the domain of possible behaviors in a
system’s environment can be much larger in scope than
the system’s realm of possible behaviors. This is true for
a networked computing environment. When the
environment is too large to model in its entirety, often

Appl=2" P App2=2' €—P Appi=2
NW =2’

Figure 3: Component State Space Size

assumptions must be made about the environment’s
possible behaviors. Assumptions often must be made
with weaker justification than abstractions made within
the system because: 5

® ‘A system must be fault tolerant across the entire
environment domain in which it is deployed

* Experts often have less information about the
intricate behaviors of the system’s environment
at large.

* Environments evolve over time as systems are
maintained and adapted to new purposes or
software is reused.

The assumptions, if made incorrectly, may produce
weaknesses in the analysis results that leave software
hazards undiscovered. If the environment changes,
altering a model to analyze the new environment may be
expensive if the model is not built in such a way that
allows for this future flexibility. Achieving flexibility on
the model of networked system environments is of
particular importance because:

e ltisa given that this environment will evolve
over time.

e The environment is so complex that the state
space remains overwhelmingly large even after
reasonable assumptions are made.

This framework offers a tradeoff scenario to building
and altering models to verify given properties. By
compartmentalizing functional pieces of the model, each
component’s state space can be calculated and associated
with the component. A model’s state spaced can be

calculated at or prior to assembly time. When the model
checking capability limits are reached, the model may be
altered in a very systematic way. Insight into behavior
associated with a given property may be achieved by
increasing the level of detail with which a component’s
behavior is modeled. This will increase the assembled
state space accordingly. Thus, another component’s
detail must be decreased to stay within a model checker’s
capability. The framework allows the modeler to choose
competently which component(s) to apply abstraction to
and how much abstraction must take place (i.e., how
much state space must be removed) to continue to
perform model checking (See Figure 3). This abstraction
minimizes the number / severity of assumptions that must
be made to compensate for added detail in other areas by
predetermining the amount of state space that must be
eliminated in a given component. By examining the
model with varying levels of behavioral resolution in
different components, verification results may be
achieved via Compositional Model Verification
techniques (See 3.2).

4. Network Systems

4.1. Architecture

The architecture of network systems is by necessity
designed to provide a ubiquitous means for transferring
arbitrary data between computing systems. Thus, these
computing systems share and make use of data via the
network and their software.

For purposes of formally verifying network system
software via model checking, the architecture may be
initially viewed as two major layers. Layer I is the
NAAs. These are software programs that rely on the
network while performing their function but do not
implement the network communication functionality.
Layer 2 is the network system software. This is the
software that is responsible for providing communication
between the NAAs and other systems connected to the
network. This includes such functions as send, routing,
receiving and returning data packets appropriately over
the network.

When analyzing network software for violations of
security requirements the network software is the system
in question. The combination of all the NAAs interacting
with the network at a given point in time is analogous to
the environment of the network software system. Due to
the large number of NAAs in existence the number of
possible environments is far too large to examine each
one individually. The problem becomes worse when
NAAs must be examined in combination, and are
intractable when combinations must allow for multiple

instances of one or more NAAs. The representation of an
environment that could display anv and/or all of the
behaviors resulting from possible NAA combinations as
described above is extremely complex. The FMF is well
suited to verification of a system with respect to a highly
complex environment.

4.2. Security Requirements

Network requirements most often take the form of
some succinct statement about an interaction between the
network system software and its environment. For
example, “Every messages sent over the network would
either be received or returned to the sender”. These rules
are defined by the network protocol in use. In the case of
the Transmission Control Protocol / Internet Protocol
(TCP/IP), standard rules are set and all network system
software must obey the rules to communicate. These
rules are usually grouped together into sets and follow the
OSI network model. In TCP/IP the Internet Control
Message Protocol (ICMP) is used. in part, to help
network packets reach their intended destination and to
provide error reporting when the destination is
unreachable, latency or other issues cause packets to get
lost. The Ping command is an example of network
software whose functionality obeys the requirement that
€very message sent over the network will either be
received or returned. The Ping command can be used to
verify connectivity between your host and a given
Internet destination by simply typing ping and the
destination_host name or IP address. A ping packet is
sent from your host to the destination. The ICMP
protocol designates a series of replies. If the packet
reaches the destination, the destination_host replies with
ICMP Echo Reply packets (See Figure 4 below). If the
packet cannot find the destination host, ICMP Error
Replies are returned to your host.

Operational requirements specify the behaviors that a
networked system should exhibit such as accessibility by
authorized users and denial of access by unauthorized
users. Security requirements seek to safeguard the
operational requirements from malicious or inadvertent
environmental events that attempt to violate them. These
environmental events, referred to as attacks when
perpetrated maliciously, may be categorized as:

e Those that cause network software
malfunctions that produce behavior that
violates operational requirements.

* Those that exploit “correct” network software
behavior in order to force the system to
violate operational requirements. - Many DoS

attacks fall into this category (See Section
3.3).

I. Pinging 198.49.45.10 with 32 bytes of data:

2a. Reply from 12.126.0.29: Destination net
unreachable.

3a. Request timed out.

4a. Reply from 12.126.0.29: Destination net
unreachable.

5a. Request timed out.

2b. Ping statistics for 198.49.45.10:

3b. Packets: Sent = 4, Received =2, Lost =2 (50%

loss),

4b. Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average =

Oms

Figure 4: 2 Possible “Ping” Scenarios

Combating attacks involves recognition and response.
Recogrition relies on previous encounters with, and thus
previous damage from, the attack in question. In the first
category, damage from subsequent attacks of the same
type may be minimized or avoided though effective
response. The latter category, which is the primary focus
of this ongoing research, presents a much harder response
problem because the early event in the attack are ‘correct”
network software behavior and thus currently cannot be
distinguished from normal network events.

Denial of Service (DoS) attacks, the most recent
Internet plague, is having dramatic effects on network
service and stability of its victims. The current state of
the art is that of “react and patch” the network software
for each new attack encountered. Often with a DDoS
attack, recovering may take hours (or even longer).

Although DoS attacks are not something new, the
increased accessibility of the Internet and the ever
decreasing age and sophistication of the average
computer hacker coupled with the complexity of hacker
code proliferated across the Internet is resulting in an
enormous surge in the type of attack which is specifically
and solely intended to deny service to a given system or
application. In many cases, the exploit code to conduct
these attacks are freely available on the Internet, and it
can affect the stability of the system only by a few
keystrokes and by a mere click of the mouse,

These attacks take advantage of the deficiencies in
the TCP/IP protocol, which is used as the baseline for
communications on the Internet, and they are difficult, if

not impossible, to trace their source since the packets can
be "spoofed” or "forged" as they come from any source
on the Internet. DoS attacks attempt to deny network
services to authorized users by overwhelming networks
and systems via activity generated from multiple sources.
This denial of service stems from two causes. First,
deadlock will cause a set of processes to cease providing
service. The second cause is starvation, where a number
of processes vie for resources and some processes never
obtain them.

DosS attacks are growing in number and sophistication.
The increased complexity of this type of environmental
attack makes the need for formal verification of network
security requirements of paramount importance as
reliance on networked systems grows.

5. Modeling a Networked System in the
Flexible Modeling Framework

The FMF Approach has been developed in response to
an effort at the Jet Propulsion Laboratory, California
Institute of Technology to formally verify vulnerabilities
in networked systems as a result of weaknesses in
network system software and/or Network Aware
Applications (NAAs) interacting with one another and the
network in a concurrent fashion.

The application of the FMF to this problem entails the
modular development of model components representing
network system software behavior. These components
form the core components in the FMF. A taxonomy of
known NAAs interactions with a networking system is
being developed. The non-core components that
represent environmental behavior will be modeled from
atomic entries in the taxonomy and behaviors indicative
of DoS attacks. The properties to be verified will express
the result of successful DoS attacks. Finally, the
automation process described in section 3.4 will be
employed to produce verification results on sub-models
assembled from components in the FMF that may be
readily extrapolated to the model resulting from the
combinations of all the components developed. Thus,
effectively extractive, formally valid, model checking
results from an overall system model that to date is too
large/complex for state of the art model checkers to verify
directly.

6. Extendibility to General Requirements
Engineering

Many complex systems are not subjected to formal
verification because of cost and complexity issues that
make this much-needed form of assurance impractical.
The extensibility of this approach to the widest domain of

problems offers a means of formal verification to projects
that were previously unable to take advantage of this level
of software assurance. This first natural step is to extend
the work currently being done to various network
protocols and environments. Subsequently, a generic
extension to systems in general that must operate in
complex environments is feasible

7. Conclusion

A system that allows Internet connectivity to NAAs
must partially bear the burden of security at the network
system software layer and fully at the NAA level in a
volatile evolving environment. The goal of preventing
damage from DoS attacks and ‘mitigating damage when
prevention is not possible has been an ongoing effort that
can benefit from the use of formal approaches such as
model checking. Attacks from a network’s environment
can cause widespread damage. The growing dependence
on networked computer systems raises the criticality and
severity of the risk that a weakness may allow successful
DoS attacks. When a victim network is flooded with
spurious traffic preventing network communication and
access to network resources by its authorized users, the
damage can range from temporary annoyance to severe
safety risks and financial losses (as evidenced by those
attacks against Microsoft, Yahoo, NASA, an many
others).

The model checking approach described in this paper
will allow a wider usage of formal verification via model
checking by projects where complexity issues previously
prohibited it. The novei approach to addressing the
environmental complexity and associated state space
explosion give the practitioner a means to cope with this

phenomenon while retaining the power of formal

methods. The current focus on networked systems
connected to the Internet provides a sufficiently complex
domain of systems to prove the effectiveness of this
approach.

8. Acknowledgement

The research described in the paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration

9. References

(1] G. Holzmann, Design and Validation of Computer
Protocols, Prentice Hall, Upper Saddle River. NJ, November
1990

[2] G Holzmann, “The SPIN Model Checker”. [EEE
Transaction on Software Engincering, 23:279-295. 1997

[31 J. Powell, A Graph Theorctic Approach to Assessing
Tradeotts on Memory Usage in Model Checking. Thesis, West
Virginia University

[-H] T Andersen. ~Partial Model Checking™, Proceedings 10th
Annual [EEE Symposium on Logic in Computer Science, 1993,
LICS95

[3] J. Baumgartner and T Heyman, “An Overview and
Application of Model Reduction Techniques in Formal
Verification”, IEEE International Performance Computing and
Communication Conference [IPCCC,, 1998, pp. 172-177

[6] J. Burch, E Clarke and K. McMillan, “Symbolic Model
Checking”, [EEE Symposium on Logic in Computer Science
(LICS90), 1990, pp.428-439

(71 G. Holzmann and A. Puri, *A Minimized Automaton
Representation of Reachable States, Software Tools Sfor
Technology, Springer Verlag, 1990

[8] E. Clarke, D. Long and K. McMillian, *Compositional
Model Checking”, Proceedings of the 4" Annual Symposium
on Logic in Computer Science, 1998, pp 353-362

[9] A. Pardo and G. Hatchtel. “Incremental CTL using Model
Checking using BDD Subsetting”, Proceedings of the Design
Automation Conference, 1998, pp. 457-462.

[10] E. Clarke and T Filkorn, “Exploiting Symmetry in
Temporal Logic Model Checking”, 5t International
Conference on Computer Aided Verification, 1993

[11] E. Schnieder, S. Eaterbrook, J. Callahan, G. Holzmann, W
Rienholtz, A. Ko and M Shahabubbin, “Validating
Requirements for Fault Tolerant Systems using Model
Checking”, [EEE International Conference on Requirements
Engineering, 1998

[12] C. Meinel and C Stangier, “Increasing Efficiency of
Symbolic Model Checking by Accelerated Dynamic Variable
Reordering”, Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, 1999, pp.760-767

[13] W. Chan, R. Anderson, P. Beam, S. Burns and F.
Modugno, “Model Checking Large Software Specifications™,
IEEE Transaction on Software Engineering, Vol 24 (July 7),
1998 498-520

[14] M. Dwyer and C. Pasareanu, “Filter-based Model Checking
of Partial Systems”, Proceedings of the ACM SIGSOFT Sixth
International Symposium on the Foundation of Software
Engineering. November 1998

[15] R. Bharadwaj and C Heitmeyer, “Model Checking
Complete Requirements Specification Using Abstraction”,
Automated Software Engineering, 1999, pp. 37-68.

[16] M. Dwyer, G. Avrunin, J. Corbett, “Patterns in Property
Specifications for Finite-State Verification”, Proceeding of the
ond Workshop on Formal Methods in Software Practice, 1998,
pp7-17

[17] M. Dwyer, G. Avrunin and J. Corbett, “A System
Specification of Patterns™, http.//www.cis.ksu.edu/santos/spec-
patterns/, 1997

[18] D. Giltiam, J.Kelly and M. Bishop. “Reducing Software
Security Risk Through an Integrated Approach™ Proceedings of
IEEE 9th [nternational Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 2000

Due to NASA’s increasing reliance on software there is a growing need for rigorous formal
verification of software. Formal Methods (FM) is a collection of techniques for formally
specifying a system and verifying its requirements. FM has been successfully used in the
hardware arena but its application to software is relatively immature. FM offers powerful
techniques to detect hard-to-find flaws and inconsistencies early in the software development
lifecycle.

The current barriers to usability for FM include complexity issues and cost. Thus FM remains a
somewhat disjoint set of techniques that are expensive to apply. Domain and FM experts must
choose small portions of a system for FM analysis due to cost and complexity issues. However,
the nature of some FM techniques lends themselves to the possibility of extrapolation. Results
from a chosen portion of the system may be validly extrapolated to the system at large if the
given FM specification is developed with this in mind. The discovery and development of the
methodologies to preserve this validity is a necessary step in increasing FM capabilities.
Developing systematic processes for the effective use of FM can alleviate the high cost of FM.
The FM novice can be guided to build specifications that offer the benefit of extrapolation of
results by using well-defined systematic processes and minimal training. The reduction in FM
expertise needed to follow such processes will significantly decrease the expense of applying FM
to a given system. As with any well-defined systematic approach the opportunity for (semi-)
automation exists which will further lower the overhead of FM usage. In addition to cost benefits,
NASA software systems will benefit from increased rigor in software assurance efforts because:
1. A larger portion of a software system subjected rigorous formal verification.
2. When a larger portion of the system is formally verified, the opportunity to prove system-
wide validity of FM results through extrapolation is increased.
3. System’s currently too large and/or complex for FM techniques will be able to exploit
FM technology when using the methodologies and techniques to be developed in this
research.

